Corticokinematic coherence mainly reflects movement-induced proprioceptive feedback
نویسندگان
چکیده
Corticokinematic coherence (CKC) reflects coupling between magnetoencephalographic (MEG) signals and hand kinematics, mainly occurring at hand movement frequency (F0) and its first harmonic (F1). Since CKC can be obtained for both active and passive movements, it has been suggested to mainly reflect proprioceptive feedback to the primary sensorimotor (SM1) cortex. However, the directionality of the brain-kinematics coupling has not been previously assessed and was thus quantified in the present study by means of renormalized partial directed coherence (rPDC). MEG data were obtained from 15 subjects who performed right index-finger movements and whose finger was, in another session, passively moved, with or without tactile input. Four additional subjects underwent the same task with slowly varying movement pace, spanning the 1-5 Hz frequency range. The coupling between SM1 activity recorded with MEG and finger kinematics was assessed with coherence and rPDC. In all conditions, the afferent rPDC spectrum, which resembled the coherence spectrum, displayed higher values than the efferent rPDC spectrum. The afferent rPDC was 37% higher when tactile input was present, and it was at highest at F1 of the passive conditions; the efferent rPDC level did not differ between conditions. The apparent latency for the afferent input, estimated within the framework of the rPDC analysis, was 50-100 ms. The higher directional coupling between hand kinematics and SM1 activity in afferent than efferent direction strongly supports the view that CKC mainly reflects movement-related somatosensory proprioceptive afferent input to the contralateral SM1 cortex.
منابع مشابه
Corticokinematic coherence during active and passive finger movements
Corticokinematic coherence (CKC) refers to coupling between magnetoencephalographic (MEG) brain activity and hand kinematics. For voluntary hand movements, CKC originates mainly from the primary sensorimotor (SM1) cortex. To learn about the relative motor and sensory contributions to CKC, we recorded CKC from 15 healthy subjects during active and passive right index-finger movements. The finger...
متن کاملFunctional motor-cortex mapping using corticokinematic coherence
We present a novel method, corticokinematic coherence (CKC), for functional mapping of the motor cortex by computing coherence between cortical magnetoencephalographic (MEG) signals and the kinematics of voluntary movements. Ten subjects performed self-paced flexion-extensions of the right-hand fingers at about 3 Hz, with a three-axis accelerometer attached to the index finger. Cross-correlogra...
متن کاملOnline movement control in multiple sclerosis patients with tremor: effects of tendon vibration.
Patients with intention tremor due to multiple sclerosis (MS) exhibit an increased reliance on visual feedback in the sensorimotor control of slow goal-directed movements. In the present study, the use of proprioceptive information was investigated in MS patients with intention tremor compared to MS patients without tremor and healthy controls. Tendon vibration was applied to the wrist extensor...
متن کاملPredicting any arm movement feedback to induce three-dimensional illusory movements in humans.
Our sense of body posture and movement is mainly mediated by densely packed populations of tiny mechanoreceptors present in the muscles. Signals triggered in muscle spindles by our own actions contribute crucially to our consciousness of positions and movements by continuously feeding and updating dynamic sensorimotor maps. Deciphering the coding rules whereby the nervous system integrates this...
متن کاملMEG-compatible pneumatic stimulator to elicit passive finger and toe movements
Magnetoencephalographic (MEG) signals recorded from the primary sensorimotor (SM1) cortex are coherent with kinematics of both active and passive finger movements. The coherence mainly reflects movement-related proprioceptive afference to the cortex. Here we describe a novel MEG-compatible stimulator to generate computer-controlled passive finger and toe movements that can be used as stimuli in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 106 شماره
صفحات -
تاریخ انتشار 2015